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Abstract. ?he distribution of eigenfunction nodes in a disordered electron system under 
a slrong perpendicular magnetic field is studied. It is demonstrated that the distribution 
of eigenfunction nodes is closely related IO the amplitude Correlation or the eigenfunction 
in such a stale. For the distribution of nodes we oblained a formula Btling the nuinerical 
result, suggesting that the distribution is somewhere behveen the binomial distribution 
and the Poison distribution. 

1. Introduction 

In this paper we examine the spatial distribution of eigenfunction nodes, i.e. the 
zero eigenfunction points, in a disordered two-dimensional system under a strong 
perpendicular magnetic field. This is a model for samples in which the integer 
quantum Hall effect is observed. The strong magnetic field in this system plays three 
important main roles. Firstly the strong magnetic field produces a large energy scale, 
the Landau level spacing tW,, which is larger than the disorder induced width of the 
Landau level, so that it provides the conditions for the integer quantum Hall effect 
to occur. Secondly the resulting large value of Landau level spacing hw, confines 
the non-interacting electron motion within the lowest Landau level. In this case the 
eigenfunctions are entirely characterized by the positions of the nodes. Thirdly the 
magnetic field breaks time-reversal symmetry, which causes the eigenfunctions to be 
complex, so that the nodes are separated points instead of the nodal lines occurring 
in the system preserving time-reversal symmetry. 

Previously similar studies [l] have been made in the field of quantum chaos 
investigating the nodal lines of wavefunctions in the quantum system whose classical 
counterparts are chaotic or ergodic. The two-dimensional systems in those studies 
are time-reversal invariant and the eigenfunctions are chosen to be real. Then the 
nodal points form continuous nodal lines. 

In the quantum Hall system in which time-reversal symmetry is broken, it was 
shown [Z] that there is an important connection between the motion of the nodes of 
an eigenfunction under a change of boundary conditions and the Hall conductivity of 
such a state. In our work we shall show that the distribution of nodes is related to 
the amplitude correlations of eigenfunctions in extended states. 

Because we are interested in the extended states, we should pick up the extended 
region in the band where these energy levels lie. The centre of the band corresponds 
to the lowest Landau level energy without disorder, and the number N of energy 
levels is proportional to the system area. Although each Landau level has N degen- 
erate states without disorder, we can lift the degeneracy by taking the total number 
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of impurities to be N - 1 and, consequently, only one state remains at the Landau 
level centre. It is well known [3] in the context of localization theory that the states 
in the band tails are localized. Thus, we choose the region near the band centre to 
investigate the distribution of nodes. Another way of explaining why we concentrate 
our attention on the states near the band centre is the following. In the band tails 
the probability density is usually concentrated within a small region and thus the 
distribution of nodes is highly inhomogeneous; the eigenfunction nodes arc mainly 
far from the region of greatest probability density. 

We have some freedom in choosing the disordered potential. We consider two dif- 
ferent cases. Firstly we can arrange the potential so that the nodes are independently 
and uNformly distributed throughout the area of the system, i.e. the distribution is 
of binomial type. The potential for this is represented by 6-functions 141, which van- 
ish everywhere except at the locations of the impurities. Then the eigenfunction at 
the band centre, corresponding to the energy of the eigenstate without disorder, has 
nodes at the positions of the impurities. Secondly we can choose a general potential, 
but in this case the eigenfunction nodes arc not simply related to the potential. It 
turns out that, if the nodes are binomially distributed, then the eigenfunctions have 
very-short-range correlations. On the other hand, if the nodes are highly correlated, 
the eigenfunctions have long-range correlations. In the next section we shall argue . 
analytically that the nodes form an incompressible fluid, and that the amplitude of 
small wavevector density fluctuations has a power-law dependence on the wavevector. 
We test these ideas numerically using a Gaussian distributed random potential, i.e. 
white noise. 

The rest of this paper proceeds in the following way. In the next section we 
shall describe the relation between the amplitude fluctuations and the distribution of 
nodes. In section 3 we present numerical results, and finally in section 4 we give 
conclusions. 

2: Amplitude fluctuations and distribution of nodes 

In this section we shall consider the relation between the amplitude fluctuations of 
wavefunctions and the distribution of nodes. In order to do this, we consider first the 
Hamiltonian for the system described in the previous section. 

The Hamiltonian for an electron in the quantum Hall system with the Landau 
gauge (A, = -yB, A, = 0 )  is given by 

H = i [ ( i a / a x  - y)’- a2/ayZ] + V ( z , y )  (21) 

where we used units in which the magnetic length (hc /eB) ’ / ’ ,  the Lanor  frequency 
wc = &/me and Planck‘s constant h are set to unity. The eigenfunctions within 
the lowest Landau level take the following form in complex notation: 

$ ( z )  = exp(-+y2) n ( z  - zj) (2.2) 
I 

with z = z + iy and the nodes of $ ( z )  are at the points { z , } .  This form of the 
function is appropriate for small V(z,y)  compared with the cyclotron energy. 
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The system that we consider is a square of size L x L with the periodic boundary 
conditions imposed on the edges (z = 2 + L,  y = y + L). The area of the square 
is L2 = 2 x N ,  where N is the total number of nodes in the fundamental region. 

From the form of the function in (2.2) we can see the connection between the 
amplitude fluctuations of an eigenfunetion and the distribution of nodes using the 
Coulomb gas analogy of Laughlin [SI. Equation (2.2) can be rewitten as 

l ~ ( z ) l z  = exp ( -  yz + 2 x l n  1.z - .,I) exp[@(z;{t,})]. (2.3) 
J 

This can be interpreted by saying that @ ( z ;  {zl]) is the electrostatic potential in a 
two-dimensional classical system due to a charge distribution given by 

p ( z )  = 2 - 4 a x 6 ( 1 z  - z I I ) .  (2.4) 
3 

The charge distribution has contributions from two parts. One part is a uniform 
positive backgound charge of density 2, which produces the potential -y2. The 
other is the negative charges with -4x charge units at each point { z , } .  The point 
charges, i.e. the nodes, compensate the uniformly distributed background charge, and 
the overall charge densily vanishes to produce electrical neutrality. 

It is convenient to use the Fourier components of the charge distribution (24) in 
the fundamental area as follows: 

N 

(2.5) 
2 
N .  = 26,,,- - x e x p [ i ( q , z ,  +n,yj)l 

,=1 

where Q = (2a /L)(m,n)  with m , n  integers, and the inverse Fourier transformation 
is 

- 
P ( ~ , Y )  = Cexp[- i (q ,z  + ~ , Y ) I P , .  (2.6) 

9 
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which is consistent with Coulomb’s law. 
In order to examine the amplitude fluctuations we could choose a conventional 

correlation function such as ( I+(z)+(z‘) I*)  where (. ..) stands for the average over 
an ensemble of disordered potential. There are, however, some dilficulties in using 
this form of correlation function, particularly in evaluating the normalization constant. 
Instead we choose to examine the correlation function ( f2 ( z , z ’ ) )  with 

f(z,z‘) =InI$(z)/$(Z’)1* = @ ( z ) - @ ( z ’ ) .  (2.9) 

This form of correlation function contains the necessaly information, and the diver- 
gence from the small values of $( z‘),  which occurs when a node at zl approaches 
the point z‘, does not dominate because the integral 

is finite. 
By imposing translational invariance on the ensemble we have 

(P , )  = 0 
( P 9 L 9 , )  = 6,,-,,h(d 

where (210) stands for thc overall charge neutrality, and 

(2.12) 

where r = (z - d , y  - y’). If we assume an independent distribution for the 
eigenfunction nodes, then 

(P,P-,) = ( 8 r / L 2 ) ( 1  - (2.13) 

The sum for (f*) in (2.12) is divergent for small q, and for large L we have the 
leading contribution as follows: 

1 - L / d ’ q - - ( - i q . r +  2?r 9 4  +(q .r )? ]+  terms finite in L 

.., 2? /“’ d (i) + terms finite in L 
1 IL  

- 27-2 In ( 4 )  + terms finite in L .  (214) 

The divergence of this correlation function for a large system size implies that an 
independent distribution of nodes induces exceptionally large eigenfunction amplitude 



Eigenfunction node dislribution in a disordered system 7583 

fluctuations. In contrast with this, ( f 2 )  is not divergent with system size even for 
exponentially localized states. 

To avoid such divergence of the correlation function with a large system size, the 
density fluctuations in the distribution of nodes must be suppressed for small q, or 
equivalently for large wavelengths, as follows 

This is shown in figure 1, and we can see that the crossover occurs at qe = A-l. 
The estimate of the values for the power cy, and the coefficient A ,  can be made 

if the disorder potential V ( r )  is Gaussian white noise, from the previous numerical 
work 161, where 

(I+(Z)+(Z" - l Z  - Z T V  

with q = 0.4. ?b make a connection with the correlation function (f2(z,z ')) ,  we 
make two assumptions which oversimplify the real situation. Firstly we assume that 
p ,  is Gaussian distributed for small q. Secondly we suppose that, in a large system, 
the probability distribution for the normalization constant for $ ( z )  is independent of 
that for the value of Jy5(z)$(z')l2, provided that )Z - z') L. Then we can write 
as follows: 

The details of the above steps are shown in appendix 1. With the suggested form for 
( p , p - , )  in (214) we have 

cos[q. ( r  - T ' ) ]  - 1 4A - -271 l,? d2q q"-' + constant 
C(P,P-,) q q4 
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where we used the relation 

This suggests the value a = 2, with the result 

and 

( ~ + ( Z ) + ( Z ’ ) [ ’ )  ,- p-4A. 

Hence we can see that 

A e O . 1 .  

In the numerical work in the next section we test these conclusions. 

3. Numerical results 

In this section we describe the numerical procedure to test the ideas presented in 
the previous section. We use the eigenfunctions of the Hamiltonian in (2.1) with a 
Gaussian white-noise potential V(i, y). The Hamiltonian, projected onto the lowest 
Landau level, was diagonalized in a basis of N states spanning the Icvel. Although 
it is possible, in principle, to find the locations of the nodes of +( z) directly, it is 
a difficult numerical problem even for a modest number N (which we choose as 
N = 32). We use, therefore, an indirect method to find the distribution of nodes. 
We choose a square region of side length I and calculate the number of nodes within 
the region by evaluating 171 

as a contour integral around the edge of the region counterclockwise. The result 
is an integer equal to the number of enclosed nodes, some of which may be, of 
course; multiple nodes. We investigated the regions with 15 values of side length 
from I = 1 , 2 , .  . . to the maximum length I = L = ~ ( 2 r r N ) 1 / 2  = 14.18. 

The mean number of nodes within each region over different realizations of 
the random potential is determined by the density of nodes and is simply N(l/L)’.  
However, because of the limit of CPU computing time (lo4 s) on the batch job of IBM 
3090 we could average over ten realizations. Thus the average actually obtained by 
the computer is slightly different from the ideal value N( l / L ) 2 .  We call N ( l / L ) z  the 
absolute average values, and the actual mean values over ten realizations the relative 
averagevalues. The variance defined by (nf)  - (nr )2  is an interesting quantity because 
it contains information on the density fluctuation of nodes, and we can say that it 
reflects the ‘compressibility’ of the fluid of nodes. Then we have two kinds of variance 
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in numerical results: one is the variance from the absolute average J V ( ~ / L ) ~ ,  and 
the other is the variance from the relative average. 

If the nodes are binomially distributed, then 
(nf) - (n1)2 = N ( L / L ) Z [ l -  ( l / L ) Z ] .  (3.1) 

For a general distribution characterized by (p,p-,) we have 

where in the summation the origin of q must be excluded because the function is not 
well defined there. 

For numerical work it is more convenient to arrange this expression in the fol- 
lowing way: 

N 16sin2(q,1/2)sin2(q,1/2) 
q: q; 

(4) - (.J2 = 3 
Q 

(3.3) 

where denotes the sum over all q = ( 2 ~ / L ) ( m , n )  for -CO < m , n  < CO, and 2 denotes the sum only for q, Aq2 < 1, excluding the origin in both cases. Then the 
first term is simply the binomial distribution of (3.1), which is proved in appendix 2. 

In table 1 we show the numerical data of the standard deviation, the square root 
of variance, of each region from absolute and relative averages. We see that the 
standard deviations from the absolute averages are always larger than those from the 
relative averages which we can expect. We also include the data of standard deviations 
from (3.1) and (3.2), in the same table. In figure 2 we show these results in a graph, 
and the result from equation (3.2) fits the numerical results quite well. For numerical 
work we used the value A = 0.1 in equation (3.2). The distribution is found to be 
some combination of the binomial distribution and the Poisson distribution. 

Tabk 1. Standard deviations versus a m  SDR, standard deviations from the relative 
average; SDA, standard deviations from the abvolule average; SD. standard deviations 
from our equalion (3.2); 8sD, standard deviations from the binomial distribution. 

Area SDR SDA SD BSD 

1.0000 
4.0000 
9.0000 
16.0000 
25.0000 
36.ww 
49.0000 
64,0030 
81.Owo 
lW.0000 
121.0wo 
144.owo 
169.0WO 
196.0WO 
201.0619 

013315 0.3715 
0.3840 0.5079 
0.6578 0.6949 
0.7618 08134 
0.7688 0.8193 
0.9205 1.0499 
1.0930 1.2240 
1.0884 1.2249 
1.0227 1.1507 
1.2078 1.3514 
1.1844 1.3566 
1.3867 1.5909 
1.4408 1.6181 
0.7386 0.7970 
0.0000 0.0000 

0.3327 
0.4822 
0.6064 
0.6998 
0.7898 
0.8640 
0.9384 
I.0010 
1.0672 
1.12m 
1.1846 
1.2207 
1.3176 
0.8371 
0.0000 

0.3979 
0.7899 
1.1697 
1,5310 
1.8666 
21688 
2.4286 
2.6351 
2.7745 
28284 
2.7692 
2.5503 
2.0710 

O.WO0 
0.88$2 
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Figure 2. PI01 of standard deviations versus area from table 1 

4. Conclusions 

We have examined the distribution of eigenfunction nodes in a two-dimensional dis- 
ordered system and found that the density fluctuations are highly suppressed at long 
wavelengths. This means that the fluid of nodes in such a system is incomprcssible. 
It is also found that the amplitude of small wavevector fluctuations in the fluid has a 
power-law dependence on the Wavevector which is consistent with previous numerical 
work. 
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Appendix 1. Proof of equation (Z.lq 

We shall show that 

(Al.1) 
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for the Gaussian distribution of p,. First we note that p; = p-, from equation 
(25). Then writing p, = x + iy with I, y real, we have the following form of the 
distribution P(pq) :  

(A1.2) P(pq)  = (27ru2)-'exp[-(x2 + y 2 ) / ~ u 2 ] .  

Then we have 

(A1.3) 

We also have (p,p-,) = (xz) + ( y a )  = 2u2. Hence (A1.3) is 

) exp (pw-,) q4 

2{1 + cos[q .  ( T  - T ' ) ] }  

Appendix 2. Proof of equivalence of the first term in (3.3) to the binomial distribution 
(3.1) 

We need to show that 

16 sin2(q,Z/2) sin2(q,1/2) 

"E L4 'I q2 s: 

is equivalent to N( l /L )* [ l  - ( l / L ) ' ] ,  where the sum excludes the origin and q = 
( 2 a / L ) ( m , n ) .  This can be rewritten as 
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Now noting that 

L 

(cf [SI) we have 

[ 1 6 N / ( 2 7 ~ ) ~ ] 1 ( 7 r ~ l / L ) ~  = N ( 1 2 / L 2 ) .  

However, we must exclude the contribution from the origin because it was deceptively 
included in the above calculation. It is obtained from (A2.2) as 

( 1 6 N / L ' ) ( L / 2 ? r ) ' ( ~ l / L ) ~  = ( I / L ) ' N .  ('42.3) 

Therefore equation (A2.1) equals 

N ( l / L ) 2 [ 1 -  ( I / L ) Z ]  

This is precisely equation (3.1). 
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